博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
WAF 强化学习
阅读量:6453 次
发布时间:2019-06-23

本文共 11993 字,大约阅读时间需要 39 分钟。

参考:https://github.com/duoergun0729/3book/tree/master/code/gym-waf

代码:

wafEnv.py

#-*- coding:utf-8 –*-import numpy as npimport reimport randomfrom gym import spacesimport gymfrom sklearn.model_selection import train_test_split#samples_file="xss-samples.txt"samples_file="xss-samples-all.txt"samples=[]with open(samples_file) as f:    for line in f:        line = line.strip('\n')        print("Add xss sample:" + line)        samples.append(line)# 划分训练和测试集合samples_train, samples_test = train_test_split(samples, test_size=0.4)class Xss_Manipulator(object):    def __init__(self):        self.dim = 0        self.name=""    #常见免杀动作:    # 随机字符转16进制 比如: a转换成a;    # 随机字符转10进制 比如: a转换成a;    # 随机字符转10进制并假如大量0 比如: a转换成a;    # 插入注释 比如: /*abcde*/    # 插入Tab    # 插入回车    # 开头插入空格 比如: /**/    # 大小写混淆    # 插入 \00 也会被浏览器忽略    ACTION_TABLE = {    #'charTo16': 'charTo16',    #'charTo10': 'charTo10',    #'charTo10Zero': 'charTo10Zero',    'addComment': 'addComment',    'addTab': 'addTab',    'addZero': 'addZero',    'addEnter': 'addEnter',    }    def charTo16(self,str,seed=None):        #print("charTo16")        matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)        if matchObjs:            #print("search --> matchObj.group() : ", matchObjs)            modify_char=random.choice(matchObjs)            #字符转ascii值ord(modify_char            #modify_char_10=ord(modify_char)            modify_char_16="&#{};".format(hex(ord(modify_char)))            #print("modify_char %s to %s" % (modify_char,modify_char_10))            #替换            str=re.sub(modify_char, modify_char_16, str,count=random.randint(1,3))        return str    def charTo10(self,str,seed=None):        #print("charTo10")        matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)        if matchObjs:            #print("search --> matchObj.group() : ", matchObjs)            modify_char=random.choice(matchObjs)            #字符转ascii值ord(modify_char            #modify_char_10=ord(modify_char)            modify_char_10="&#{};".format(ord(modify_char))            #print("modify_char %s to %s" % (modify_char,modify_char_10))            #替换            str=re.sub(modify_char, modify_char_10, str)        return str    def charTo10Zero(self,str,seed=None):        #print("charTo10")        matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)        if matchObjs:            #print("search --> matchObj.group() : ", matchObjs)            modify_char=random.choice(matchObjs)            #字符转ascii值ord(modify_char            #modify_char_10=ord(modify_char)            modify_char_10="{};".format(ord(modify_char))            #print("modify_char %s to %s" % (modify_char,modify_char_10))            #替换            str=re.sub(modify_char, modify_char_10, str)        return str    def addComment(self,str,seed=None):        #print("charTo10")        matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)        if matchObjs:            #选择替换的字符            modify_char=random.choice(matchObjs)            #生成替换的内容            #modify_char_comment="{}/*a{}*/".format(modify_char,modify_char)            modify_char_comment = "{}/*8888*/".format(modify_char)            #替换            str=re.sub(modify_char, modify_char_comment, str)        return str    def addTab(self,str,seed=None):        #print("charTo10")        matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)        if matchObjs:            #选择替换的字符            modify_char=random.choice(matchObjs)            #生成替换的内容            modify_char_tab="   {}".format(modify_char)            #替换            str=re.sub(modify_char, modify_char_tab, str)        return str    def addZero(self,str,seed=None):        #print("charTo10")        matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)        if matchObjs:            #选择替换的字符            modify_char=random.choice(matchObjs)            #生成替换的内容            modify_char_zero="\\00{}".format(modify_char)            #替换            str=re.sub(modify_char, modify_char_zero, str)        return str    def addEnter(self,str,seed=None):        #print("charTo10")        matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)        if matchObjs:            #选择替换的字符            modify_char=random.choice(matchObjs)            #生成替换的内容            modify_char_enter="\\r\\n{}".format(modify_char)            #替换            str=re.sub(modify_char, modify_char_enter, str)        return str    def modify(self,str, _action, seed=6):        print("Do action :%s" % _action)        action_func=Xss_Manipulator().__getattribute__(_action)        return action_func(str,seed)ACTION_LOOKUP = {i: act for i, act in enumerate(Xss_Manipulator.ACTION_TABLE.keys())}##a="get";b="URL(ja\"";c="vascr";d="ipt:ale";e="rt('XSS');\")";eval(a+b+c+d+e);#">##
click#

hellox worldss

#LOLclass Waf_Check(object): def __init__(self): self.name="Waf_Check" self.regXSS=r'(prompt|alert|confirm|expression])' \ r'|(javascript|script|eval)' \ r'|(onload|onerror|onfocus|onclick|ontoggle|onmousemove|ondrag)' \ r'|(String.fromCharCode)' \ r'|(;base64,)' \ r'|(οnblur=write)' \ r'|(xlink:href)' \ r'|(color=)' #self.regXSS = r'javascript' def check_xss(self,str): isxss=False #忽略大小写 if re.search(self.regXSS,str,re.IGNORECASE): isxss=True return isxssclass Features(object): def __init__(self): self.dim = 0 self.name="" self.dtype=np.float32 def byte_histogram(self,str): #bytes=np.array(list(str)) bytes=[ord(ch) for ch in list(str)] #print(bytes) h = np.bincount(bytes, minlength=256) return np.concatenate([ [h.sum()], # total size of the byte stream h.astype(self.dtype).flatten() / h.sum(), # normalized the histogram ]) def extract(self,str): featurevectors = [ [self.byte_histogram(str)] ] return np.concatenate(featurevectors)class WafEnv_v0(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], } def __init__(self): self.action_space = spaces.Discrete(len(ACTION_LOOKUP)) #xss样本特征集合 #self.samples=[] #当前处理的样本 self.current_sample="" #self.current_state=0 self.features_extra=Features() self.waf_checker=Waf_Check() #根据动作修改当前样本免杀 self.xss_manipulatorer= Xss_Manipulator() self._reset() def _seed(self, num): pass def _step(self, action): r=0 is_gameover=False #print("current sample:%s" % self.current_sample) _action=ACTION_LOOKUP[action] #print("action is %s" % _action) self.current_sample=self.xss_manipulatorer.modify(self.current_sample,_action) #print("change current sample to %s" % self.current_sample) if not self.waf_checker.check_xss(self.current_sample): #给奖励 r=10 is_gameover=True print("Good!!!!!!!avoid waf:%s" % self.current_sample) self.observation_space=self.features_extra.extract(self.current_sample) return self.observation_space, r,is_gameover,{} def _reset(self): self.current_sample=random.choice(samples_train) print("reset current_sample=" + self.current_sample) self.observation_space=self.features_extra.extract(self.current_sample) return self.observation_space def render(self, mode='human', close=False): return

 主代码:

#-*- coding:utf-8 –*-import gymimport timeimport randomimport gym_waf.envs.wafEnvimport pickleimport numpy as npfrom keras.models import Sequentialfrom keras.layers import Dense, Activation, Flatten, ELU, Dropout, BatchNormalizationfrom keras.optimizers import Adam, SGD, RMSpropfrom rl.agents.dqn import DQNAgentfrom rl.agents.sarsa import SarsaAgentfrom rl.policy import EpsGreedyQPolicyfrom rl.memory import SequentialMemoryfrom gym_waf.envs.wafEnv  import samples_test,samples_train# from gym_waf.envs.features import Featuresfrom gym_waf.envs.waf import Waf_Checkfrom gym_waf.envs.xss_manipulator import Xss_Manipulatorfrom keras.callbacks import TensorBoardENV_NAME = 'Waf-v0'#尝试的最大次数nb_max_episode_steps_train=50nb_max_episode_steps_test=3ACTION_LOOKUP = {i: act for i, act in enumerate(Xss_Manipulator.ACTION_TABLE.keys())}class Features(object):    def __init__(self):        self.dim = 0        self.name=""        self.dtype=np.float32    def byte_histogram(self,str):        #bytes=np.array(list(str))        bytes=[ord(ch) for ch in list(str)]        #print(bytes)        h = np.bincount(bytes, minlength=256)        return np.concatenate([            [h.sum()],  # total size of the byte stream            h.astype(self.dtype).flatten() / h.sum(),  # normalized the histogram        ])    def extract(self,str):        featurevectors = [            [self.byte_histogram(str)]        ]        return np.concatenate(featurevectors)def generate_dense_model(input_shape, layers, nb_actions):    model = Sequential()    model.add(Flatten(input_shape=input_shape))    model.add(Dropout(0.1))    for layer in layers:        model.add(Dense(layer))        model.add(BatchNormalization())        model.add(ELU(alpha=1.0))    model.add(Dense(nb_actions))    model.add(Activation('linear'))    print(model.summary())    return modeldef train_dqn_model(layers, rounds=10000):    env = gym.make(ENV_NAME)    env.seed(1)    nb_actions = env.action_space.n    window_length = 1    print("nb_actions:")    print(nb_actions)    print("env.observation_space.shape:")    print(env.observation_space.shape)    model = generate_dense_model((window_length,) + env.observation_space.shape, layers, nb_actions)    policy = EpsGreedyQPolicy()    memory = SequentialMemory(limit=256, ignore_episode_boundaries=False, window_length=window_length)    agent = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=16,                     enable_double_dqn=True, enable_dueling_network=True, dueling_type='avg',                     target_model_update=1e-2, policy=policy, batch_size=16)    agent.compile(RMSprop(lr=1e-3), metrics=['mae'])    #tb_cb = TensorBoard(log_dir='/tmp/log', write_images=1, histogram_freq=1)    #cbks = [tb_cb]    # play the game. learn something!    #nb_max_episode_steps 一次学习周期中最大步数    agent.fit(env, nb_steps=rounds, nb_max_episode_steps=nb_max_episode_steps_train,visualize=False, verbose=2)    #print("#################Start Test%################")    #agent.test(env, nb_episodes=100)    test_samples=samples_test    features_extra = Features()    waf_checker = Waf_Check()    # 根据动作修改当前样本免杀    xss_manipulatorer = Xss_Manipulator()    success=0    sum=0    shp = (1,) + tuple(model.input_shape[1:])    for sample in samples_test:        #print(sample)        sum+=1        for _ in range(nb_max_episode_steps_test):            if not waf_checker.check_xss(sample) :                success+=1                print(sample)                break            f = features_extra.extract(sample).reshape(shp)            act_values = model.predict(f)            action=np.argmax(act_values[0])            sample=xss_manipulatorer.modify(sample,ACTION_LOOKUP[action])    print("Sum:{} Success:{}".format(sum,success))    return agent, modelif __name__ == '__main__':    agent1, model1= train_dqn_model([5, 2], rounds=1000)    model1.save('waf-v0.h5', overwrite=True)

 效果:

reset current_sample=Do action :addEnterDo action :addCommentGood!!!!!!!avoid waf: 987/1000: episode: 221, duration: 0.016s, episode steps: 2, steps per second: 122, episode reward: 10.000, mean reward: 5.000 [0.000, 10.000], mean action: 1.500 [0.000, 3.000], mean observation: 0.179 [0.000, 53.000], loss: 1.608465, mean_absolute_error: 3.369818, mean_q: 7.756353reset current_sample=
Do action :addEnterDo action :addEnterDo action :addEnterDo action :addZeroDo action :addEnterDo action :addEnterDo action :addEnterDo action :addEnterDo action :addEnterGood!!!!!!!avoid waf:

 

转载地址:http://tkfzo.baihongyu.com/

你可能感兴趣的文章
Quartz
查看>>
正则表达式介绍
查看>>
初识Scala反射
查看>>
第三十九天
查看>>
Redis详解
查看>>
论程序员加班的害处
查看>>
codeblocks快捷键
查看>>
基于HTML5的WebGL设计汉诺塔3D游戏
查看>>
WPF资料链接
查看>>
过滤DataTable表中的重复数据
查看>>
Oracle数据库-trunc函数的用法
查看>>
prepare for travel 旅行准备
查看>>
再次更新
查看>>
iOS开发代理(委托)模式详解
查看>>
微服务学习笔记二:Eureka服务注册发现
查看>>
C# 获取编码
查看>>
mysql的数据类型int、bigint、smallint 和 tinyint取值范围
查看>>
利用网易获取所有股票数据
查看>>
HDOJ5015 233 Matrix(矩阵乘法加速递推)
查看>>
移动铁通宽带上网设置教程
查看>>